Search results
Results from the WOW.Com Content Network
optics (slit diffraction) [6] Refractive index: n = electromagnetism, optics (speed of light in vacuum over speed of light in a material) Transmittance: T = optics, spectroscopy (the ratio of the intensities of radiation exiting through and incident on a sample)
In differential geometry, the use of dimensionless parameters is evident in geometric relationships and transformations. Physics relies on dimensionless numbers like the Reynolds number in fluid dynamics, [6] the fine-structure constant in quantum mechanics, [7] and the Lorentz factor in relativity. [8] In chemistry, state properties and ratios ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
For example, for a Hookean elastic solid, the relaxation time t c will be infinite and it will vanish for a Newtonian viscous fluid. For liquid water, t c is typically 10 −12 s, for lubricating oils passing through gear teeth at high pressure it is of the order of 10 −6 s and for polymers undergoing plastics processing, the relaxation time ...
In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.
siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar ...
Dimensionless numbers of thermodynamics (22 P) Pages in category "Dimensionless numbers of physics" The following 30 pages are in this category, out of 30 total.
Most notably, in a 1929 paper he set out an argument based on the Pauli exclusion principle and the Dirac equation that fixed the value of the reciprocal of the fine-structure constant as 𝛼 −1 = 16 + 1 / 2 × 16 × (16–1) = 136. When its value was discovered to be closer to 137, he changed his argument to match that value.