Search results
Results from the WOW.Com Content Network
2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid. The oxidation involves radicals and the intermediacy of the hydroperoxide C 6 H 11 O 2 H. Alternatively, cyclohexanol can be produced by the hydrogenation of phenol ...
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; ... 1.25 83.5 −35 [7] Acetonitrile: 0.78 81.6 −45 [8 ...
6.7 kJ/mol at –87.0 °C crystal II → crystal I Entropy of transition, Δ trs S o: 36 J/(mol·K) at –87.0 °C crystal II → crystal I Liquid properties Std enthalpy change of formation, Δ f H o liquid –156.4 kJ/mol Standard molar entropy, S o liquid: 204 J/(mol K) Enthalpy of combustion, Δ c H o –3919.6 kJ/mol Heat capacity, c p
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Cyclohexane is a cycloalkane with the molecular formula C 6 H 12. Cyclohexane is non-polar . Cyclohexane is a colourless, flammable liquid with a distinctive detergent -like odor, reminiscent of cleaning products (in which it is sometimes used).
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Hexane (/ ˈ h ɛ k s eɪ n /) or n-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C 6 H 14. [7]Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately 69 °C (156 °F).
Benzene is converted to cyclohexylbenzene by acid-catalyzed alkylation with cyclohexene. [6] Cyclohexylbenzene is a precursor to both phenol and cyclohexanone. [7]Hydration of cyclohexene gives cyclohexanol, which can be dehydrogenated to give cyclohexanone, a precursor to caprolactam.