Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
Small finite examples: The three partially ordered sets on the left are trees (in blue); one branch of one of the trees is highlighted (in green). The partially ordered set on the right (in red) is not a tree because x 1 < x 3 and x 2 < x 3, but x 1 is not comparable to x 2 (dashed orange line).
Hasse diagram of the set P of divisors of 60, partially ordered by the relation "x divides y".The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element.
The directed preordered set (,) is partially ordered if and only if has exactly one element. All pairs of elements from R {\displaystyle R} are comparable and every element of R {\displaystyle R} is a greatest element (and thus also a maximal element) of ( R , ≤ ) . {\displaystyle (R,\leq ).}
Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice.
Consequently, partially ordered sets for which certain infima are known to exist become especially interesting. For instance, a lattice is a partially ordered set in which all nonempty finite subsets have both a supremum and an infimum, and a complete lattice is a partially ordered set in which all subsets
The term complete partial order, abbreviated cpo, has several possible meanings depending on context. A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.)
Consider a partially ordered set (X, ≤). As a first simple example, let 1 = {*} be a specified one-element set with the only possible partial ordering. There is an obvious mapping j: X → 1 with j(x) = * for all x in X. X has a least element if and only if the function j has a lower adjoint j *: 1 → X.