Search results
Results from the WOW.Com Content Network
Specifically, it is the phosphodiester bonds that link the 3' carbon atom of one sugar molecule and the 5' carbon atom of another (hence the name 3', 5' phosphodiester linkage used with reference to this kind of bond in DNA and RNA chains). [3] The involved saccharide groups are deoxyribose in DNA and ribose in RNA.
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
Chemical structure of DNA; hydrogen bonds shown as dotted lines. Each end of the double helix has an exposed 5' phosphate on one strand and an exposed 3′ hydroxyl group (—OH) on the other. DNA is a long polymer made from repeating units called nucleotides.
DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure. DNA synthesis occurs when these nucleotide units are joined to form DNA; this can occur artificially (in vitro) or naturally (in vivo). Nucleotide units are made up of a nitrogenous base (cytosine, guanine ...
The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Five nucleobases— adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—are called primary or canonical .
The 6–4 photoproduct (6–4 pyrimidine–pyrimidone, or 6–4 pyrimidine–pyrimidinone) is an alternate dimer configuration consisting of a single covalent bond linking the carbon at the 6 (C6) position of one pyrimidine ring and carbon at the 4 (C4) position of the adjoining base's ring. [11]
DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond.It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA).
When deoxyribonucleotides polymerize to form DNA, the phosphate group from one nucleotide will bond to the 3' carbon on another nucleotide, forming a phosphodiester bond via dehydration synthesis. New nucleotides are always added to the 3' carbon of the last nucleotide, so synthesis always proceeds from 5' to 3'.