enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force.

  3. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    Bolts are correctly torqued to maintain the friction. The shear force only becomes relevant when the bolts are not torqued. A bolt with property class 12.9 has a tensile strength of 1200 MPa (1 MPa = 1 N/mm 2 ) or 1.2 kN/mm 2 and the yield strength is 0.90 times tensile strength, 1080 MPa in this case.

  4. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  5. Bolted joint - Wikipedia

    en.wikipedia.org/wiki/Bolted_joint

    When a shear load is applied, the connected parts move and the bolt shank makes contact with the hole walls, which transfers the load from the parts to the bolt. This causes a shear stress in the bolt at the junction of the connected parts, which it resists through its shear strength. As bearing type joints rely on this direct contact, they are ...

  6. Structural engineering - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering

    Figure of a bolt in shear stress. Top figure illustrates single shear, bottom figure illustrates double shear. Structural engineering depends upon a detailed knowledge of applied mechanics, materials science, and applied mathematics to understand and predict how structures support and resist self-weight and imposed loads.

  7. Slip-critical joint - Wikipedia

    en.wikipedia.org/wiki/Slip-critical_joint

    Shear (and tension) loads can be transferred between two structural elements by either a bearing-type connection or a slip-critical connection. In a slip-critical connection, loads are transferred from one element to another through friction forces developed between the faying surfaces of the connection. These friction forces are generated by ...

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  9. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.