enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Their difference is given by the Dirichlet integral, ⁡ ⁡ = ⁡ = ⁡ = + ⁡ . In signal processing , the oscillations of the sine integral cause overshoot and ringing artifacts when using the sinc filter , and frequency domain ringing if using a truncated sinc filter as a low-pass filter .

  3. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.

  4. Cauchy principal value - Wikipedia

    en.wikipedia.org/wiki/Cauchy_principal_value

    The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of contour integrals of a complex-valued function f ( z ) : z = x + i y , {\displaystyle f(z):z=x+i\,y\;,} with x , y ...

  5. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    to a given degree of accuracy. If f ( x ) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision.

  6. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.

  7. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.

  8. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .

  9. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.