Search results
Results from the WOW.Com Content Network
An anabatic wind, from the Greek anabatos, verbal of anabainein meaning "moving upward", is a warm wind which blows up a steep slope or mountain side, driven by heating of the slope through insolation. [1] [2] It is also known as upslope flow. These winds typically occur during the daytime in calm sunny weather.
Whether or not the atmosphere has stability depends partially on the moisture content. In a very dry troposphere, a temperature decrease with height less than 9.8 °C (17.6 °F) per kilometer ascent indicates stability, while greater changes indicate instability. This lapse rate is known as the dry adiabatic lapse rate. [3]
In meteorology, a mountain breeze and a valley breeze are two related, localized winds that occur one after the other on a daily cycle. They are an example of anabatic and katabatic winds occurring at local scales. [1] These winds are opposite from each other.
The dry adiabatic lapse rate (for unsaturated air) is 3 °C (5.4 °F) per 1,000 vertical feet (300 m). The moist adiabatic lapse rate varies from 1.1 to 2.8 °C (2.0 to 5.0 °F) per 1,000 vertical feet (300 m). The combination of moisture and temperature determine the stability of the air and the resulting weather. Cool, dry air is very stable ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Diagram showing an air parcel path when raised along B-C-E compared to the surrounding air mass Temperature (T) and humidity (Tw); see CAPE. The level of free convection (LFC) is the altitude in the atmosphere where an air parcel lifted adiabatically until saturation becomes warmer than the environment at the same level, so that positive buoyancy can initiate self-sustained convection.
The wind flows towards a mountain and produces a first oscillation (A) followed by more waves. The following waves will have lower amplitude because of the natural damping. Lenticular clouds stuck on top of the flow (A) and (B) will appear immobile despite the strong wind. Lenticular clouds. In meteorology, lee waves are atmospheric stationary ...
If the adiabatic decrease or increase in density is less than the decrease or increase in the density of the ambient (not moved) medium, then the displaced fluid element will be subject to downwards or upwards pressure, which will function to restore it to its original position. Hence, there will be a counteracting force to the initial ...