enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    Here is yield stress of the material in pure shear. As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: =

  3. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    The Mohr–Coulomb failure criterion can then be evaluated using the usual expression = ⁡ + for the six planes of maximum shear stress. Derivation of normal and shear stress on a plane Let the unit normal to the plane of interest be

  4. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    Maximum distortion energy theory (von Mises yield criterion) also referred to as octahedral shear stress theory. [4] – This theory proposes that the total strain energy can be separated into two components: the volumetric (hydrostatic) strain energy and the shape (distortion or shear) strain energy. It is proposed that yield occurs when the ...

  5. Yield surface - Wikipedia

    en.wikipedia.org/wiki/Yield_surface

    The Tresca yield criterion is taken to be the work of Henri Tresca. [11] It is also known as the maximum shear stress theory (MSST) and the Tresca–Guest [12] (TG) criterion. . In terms of the principal stresses the Tresca criterion is expressed

  6. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    There are four failure theories: maximum shear stress theory, maximum normal stress theory, maximum strain energy theory, and maximum distortion energy theory (von Mises criterion of failure). Out of these four theories of failure, the maximum normal stress theory is only applicable for brittle materials, and the remaining three theories are ...

  7. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    The applied stress to overcome the resistance of a perfect lattice to shear is the theoretical yield strength, τ max. The stress displacement curve of a plane of atoms varies sinusoidally as stress peaks when an atom is forced over the atom below and then falls as the atom slides into the next lattice point. [18]

  8. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    This way, the shear stress acting on plane B is negative and the shear stress acting on plane A is positive. The diameter of the circle is the line joining point A and B. The centre of the circle is the intersection of this line with the -axis. Knowing both the location of the centre and length of the diameter, we are able to plot the Mohr ...

  9. Schmid's law - Wikipedia

    en.wikipedia.org/wiki/Schmid's_Law

    Schmid's Law states that the critically resolved shear stress (τ) is equal to the stress applied to the material (σ) multiplied by the cosine of the angle with the vector normal to the glide plane (φ) and the cosine of the angle with the glide direction (λ). Which can be expressed as: [2] =