enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an matrix made up of complex numbers. For an explanation of the notation used here, we begin by representing complex numbers e i θ {\displaystyle e^{i\theta }} as the rotation matrix, that is,

  3. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    Geometric representation (Argand diagram) of and its conjugate ¯ in the complex plane.The complex conjugate is found by reflecting across the real axis.. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.

  4. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]

  5. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    The horizontal axis is generally used to display the real part, with increasing values to the right, and the imaginary part marks the vertical axis, with increasing values upwards. A complex number z, as a point (black) and its position vector (blue). A real number a can be regarded as a complex number a + 0i, whose imaginary

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism.

  7. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    U can be written as U = e iH, where e indicates the matrix exponential, i is the imaginary unit, and H is a Hermitian matrix. For any nonnegative integer n, the set of all n × n unitary matrices with matrix multiplication forms a group, called the unitary group U(n). Every square matrix with unit Euclidean norm is the average of two unitary ...

  8. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex Hermitian matrices means that we can express any Hermitian matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Such a matrix A is said to be similar to the diagonal matrix Λ or diagonalizable. The matrix Q is the change of basis matrix of the similarity transformation. Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear ...