Search results
Results from the WOW.Com Content Network
The difference between the hinge loss and these other loss functions is best stated in terms of target functions - the function that minimizes expected risk for a given pair of random variables ,. In particular, let y x {\displaystyle y_{x}} denote y {\displaystyle y} conditional on the event that X = x {\displaystyle X=x} .
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...
SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...
Space vector modulation (SVM) is an algorithm for the control of pulse-width modulation (PWM), invented by Gerhard Pfaff, Alois Weschta, and Albert Wick in 1982. [ 1 ] [ 2 ] It is used for the creation of alternating current (AC) waveforms ; most commonly to drive 3 phase AC powered motors at varying speeds from DC using multiple class-D ...
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels.
Instead of being just a distance or speed walker, try alternating between the two on different days, says Dr. Redler. Two more things: When you’re walking long distances, you want to be careful ...
Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]