Search results
Results from the WOW.Com Content Network
Cone of a circle. The original space X is in blue, and the collapsed end point v is in green.. In topology, especially algebraic topology, the cone of a topological space is intuitively obtained by stretching X into a cylinder and then collapsing one of its end faces to a point.
Blunt cones can be excluded from the definition of convex cone by substituting "non-negative" for "positive" in the condition of α, β. A cone is called flat if it contains some nonzero vector x and its opposite −x, meaning C contains a linear subspace of dimension at least one, and salient otherwise.
In fact, it is the intersection of all convex cones containing S plus the origin. [1] If S is a compact set (in particular, when it is a finite non-empty set of points), then the condition "plus the origin" is unnecessary.
In mathematics, specifically in order theory and functional analysis, if is a cone at the origin in a topological vector space such that and if is the neighborhood filter at the origin, then is called normal if = [], where []:= {[]:} and where for any subset , []:= (+) is the -saturatation of . [1]
In mathematics, the cone condition is a property which may be satisfied by a subset of a Euclidean space. Informally, it requires that for each point in the subset a cone with vertex in that point must be contained in the subset itself, and so the subset is "non-flat".
Normalized responsivity spectra of human cone cells, S, M, and L types (SMJ data based on Stiles and Burch [1] RGB color-matching, linear scale, weighted for equal energy) [2] LMS (long, medium, short), is a color space which represents the response of the three types of cones of the human eye , named for their responsivity (sensitivity) peaks ...
Its defining ideal is the principal ideal of k[x] generated by the initial term of f, namely y 2 − x 2 = 0. The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x.
If X(t) is invertible for all t with 0 ≤ t ≤ 1, the eigenvalue argument gives a contradiction since it is positive at t = 0 and has negative eigenvalues at t = 1. So X(s) has a zero eigenvalue for some s with 0 < s ≤ 1: X(s)w = 0 with w ≠ 0. By the properties of the quadratic representation, x(t) is invertible for all t. Let Y(t) = L(x ...