enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  3. Nash embedding theorems - Wikipedia

    en.wikipedia.org/wiki/Nash_embedding_theorems

    The Nash embedding theorem is a global theorem in the sense that the whole manifold is embedded into R n. A local embedding theorem is much simpler and can be proved using the implicit function theorem of advanced calculus in a coordinate neighborhood of the manifold. The proof of the global embedding theorem relies on Nash's implicit function ...

  4. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...

  5. Submersion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Submersion_(mathematics)

    It follows that the full preimage f −1 (q) in M of a regular value q in N under a differentiable map f: M → N is either empty or is a differentiable manifold of dimension dim M − dim N, possibly disconnected. This is the content of the regular value theorem (also known as the submersion theorem).

  6. Foliation - Wikipedia

    en.wikipedia.org/wiki/Foliation

    Let M and Q be manifolds of dimension n and q≤n respectively, and let f : M→Q be a submersion, that is, suppose that the rank of the function differential (the Jacobian) is q. It follows from the Implicit Function Theorem that ƒ induces a codimension-q foliation on M where the leaves are defined to be the components of f −1 (x) for x ∈ ...

  7. Complex geometry - Wikipedia

    en.wikipedia.org/wiki/Complex_geometry

    By the implicit function theorem for holomorphic functions, every complex manifold is in particular a non-singular complex analytic variety, but is not in general affine or projective. By Serre's GAGA theorem, every projective complex analytic variety is actually a projective complex algebraic variety.

  8. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Differentiable functions between two manifolds are needed in order to formulate suitable notions of submanifolds, and other related concepts. If f : M → N is a differentiable function from a differentiable manifold M of dimension m to another differentiable manifold N of dimension n, then the differential of f is a mapping df : TM → TN.

  9. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    By the implicit function theorem, every submanifold of Euclidean space is locally the graph of a function. Hermann Weyl gave an intrinsic definition for differentiable manifolds in his lecture course on Riemann surfaces in 1911–1912, opening the road to the general concept of a topological space that followed shortly.