Search results
Results from the WOW.Com Content Network
Roland "Ron" Edwin Larson (born October 31, 1941) is a professor of mathematics at Penn State Erie, The Behrend College, Pennsylvania. [1] He is best known for being the author of a series of widely used mathematics textbooks ranging from middle school through the second year of college.
Cengage Group is an American educational content, technology, and services company for higher education, K–12, professional, and library markets. It operates in more than 20 countries around the world.
Business mathematics comprises mathematics credits taken at an undergraduate level by business students.The course [3] is often organized around the various business sub-disciplines, including the above applications, and usually includes a separate module on interest calculations; the mathematics itself comprises mainly algebraic techniques. [1]
In mathematics education, Finite Mathematics is a syllabus in college and university mathematics that is independent of calculus. A course in precalculus may be a prerequisite for Finite Mathematics.
The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite sets, particularly those areas relevant to business. Research in discrete mathematics increased in the latter half of the twentieth century partly due to the development of digital computers which operate in "discrete" steps and ...
Discrete mathematics, also called finite mathematics, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets , such as integers , finite graphs , and formal languages .
The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.