Ads
related to: hinge theorem and its converse worksheets 1 3 6 4v 4 7v
Search results
Results from the WOW.Com Content Network
In geometry, the hinge theorem (sometimes called the open mouth theorem) states that if two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first triangle is longer than the third side of the second triangle. [1 ...
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
It was originally given by Jürgen Moser in 1965 to check when two volume forms are equivalent, [1] but its main applications are in symplectic geometry. It is the standard argument for the modern proof of Darboux's theorem, as well as for the proof of Darboux-Weinstein theorem [2] and other normal form results. [2] [3] [4]
A function is invertible if and only if its converse relation is a function, in which case the converse relation is the inverse function. The converse relation of a function f : X → Y {\displaystyle f:X\to Y} is the relation f − 1 ⊆ Y × X {\displaystyle f^{-1}\subseteq Y\times X} defined by the graph f − 1 = { ( y , x ) ∈ Y × X : y ...
Ligament (bivalve) or hinge ligament of a bivalve shell; Molecular hinge, a molecule that can be selectively switched from one configuration to another in a reversible fashion; Hinge functions in multivariate statistics; Hinge theorem in geometry; Hinge decomposition of hypergraphs, used when studying constraint satisfaction problems
The first converse theorems were proved by Hamburger () who characterized the Riemann zeta function by its functional equation, and by Hecke (1936) who showed that if a Dirichlet series satisfied a certain functional equation and some growth conditions then it was the Mellin transform of a modular form of level 1.
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
The Conway base 13 function is a function created by British mathematician John H. Conway as a counterexample to the converse of the intermediate value theorem.In other words, it is a function that satisfies a particular intermediate-value property — on any interval (,), the function takes every value between () and () — but is not continuous.
Ads
related to: hinge theorem and its converse worksheets 1 3 6 4v 4 7v