Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. . Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, [1] dark matter particles in our galaxy have never been directly detected in an expe
The dark matter (which interacts weakly) did not. The separation between the normal matter (pink) and dark matter (blue) therefore provides direct evidence for dark matter and supports the view that dark matter particles interact with each other almost entirely through gravity.
Dark radiation (also dark electromagnetism) [1] is a postulated type of radiation that mediates interactions of dark matter.. By analogy to the way photons mediate electromagnetic interactions between particles in the Standard Model (called baryonic matter in cosmology), dark radiation is proposed to mediate interactions between dark matter particles. [1]
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.. There exists no formal definition of a WIMP, but broadly, it is an elementary particle which interacts via gravity and any other force (or forces) which is as weak as or weaker than the weak nuclear force, but also non-vanishing in strength.
Sub-GeV dark matter has been used to explain the positron excess in the Galactic Center observed by INTEGRAL, excess gamma rays from the Galactic Center [7] and extragalactic sources. It has also been suggested that light dark matter may explain a small discrepancy in the measured value of the fine structure constant in different experiments. [8]
The modern conception of matter has been refined many times in history, in light of the improvement in knowledge of just what the basic building blocks are, and in how they interact. The term "matter" is used throughout physics in a wide variety of contexts: for example, one refers to "condensed matter physics", [98] "elementary matter", [99 ...