enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .

  3. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.

  4. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The slope of the initial, linear portion of this curve gives Young's modulus. Mathematically, Young's modulus E is calculated using the formula E=σ/ϵ, where σ is the stress and ϵ is the strain. Shear modulus (G) Initial structure: Start with a relaxed structure of the material. All atoms should be in a state of minimum energy with no ...

  5. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed (m 8 kg −2 s −2) Reference Latex foam, low density, 10% compression [4] 5.9 × 10 ^ −7: 0.06: 9.83 × 10 ^ −6: 0.000164: 0.00273: Reversible ...

  6. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...

  7. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    [1]: 58 For example, low-carbon steel generally exhibits a very linear stress–strain relationship up to a well-defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...

  8. Impulse excitation technique - Wikipedia

    en.wikipedia.org/wiki/Impulse_excitation_technique

    E 1 and E 2 are the Young's moduli in the 1- and 2-direction and G 12 is the in-plane shear modulus. v 12 is the major Poisson's ratio and v 21 is the minor Poisson's ratio. The flexibility matrix [S] is symmetric. The minor Poisson's ratio can hence be found if E 1, E 2 and v 12 are known.

  9. Rule of mixtures - Wikipedia

    en.wikipedia.org/wiki/Rule_of_mixtures

    where is the volume fraction of the fibers in the composite (and is the volume fraction of the matrix).. If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law = for some elastic modulus of the composite and some strain of the composite , then equations 1 and 2 can be combined to give