Search results
Results from the WOW.Com Content Network
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.
In computer science, merge sort (also commonly spelled as mergesort and as merge-sort [2]) is an efficient, general-purpose, and comparison-based sorting algorithm.Most implementations produce a stable sort, which means that the relative order of equal elements is the same in the input and output.
The k-way merge problem consists of merging k sorted arrays to produce a single sorted array with the same elements.Denote by n the total number of elements. n is equal to the size of the output array and the sum of the sizes of the k input arrays.
For instance, the array might be subdivided into chunks of a size that will fit in RAM, the contents of each chunk sorted using an efficient algorithm (such as quicksort), and the results merged using a k-way merge similar to that used in merge sort. This is faster than performing either merge sort or quicksort over the entire list. [40] [41]
Bitonic mergesort is a parallel algorithm for sorting. It is also used as a construction method for building a sorting network.The algorithm was devised by Ken Batcher.The resulting sorting networks consist of ( ()) comparators and have a delay of ( ()), where is the number of items to be sorted. [1]
The outer loop of block sort is identical to a bottom-up merge sort, where each level of the sort merges pairs of subarrays, A and B, in sizes of 1, then 2, then 4, 8, 16, and so on, until both subarrays combined are the array itself.
C / C++ qsort() parameters are pointer to array, ... , array size. Typical code that loops across an array uses something like for ( i=0; i<size; i+=1). HP / Microsoft STL <algorithm> stable_sort, which is an almost bottom up merge sort splits the array / vector into two parts using (A, start, mid), (A, mid, end).
To merge, Timsort copies the elements of the smaller array (X in this illustration) to temporary memory, then sorts and fills elements in final order into the combined space of X and Y. The original merge sort implementation is not in-place and it has a space overhead of N (data size).