enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greedy number partitioning - Wikipedia

    en.wikipedia.org/wiki/Greedy_number_partitioning

    Several additional heuristics can be used to improve the runtime: [2] In a node in which the current sum-difference is at least the sum of all remaining numbers, the remaining numbers can just be put in the smallest-sum subset. If we reach a leaf in which the sum-difference is 0 or 1, then the algorithm can terminate since this is the optimum.

  3. Multiway number partitioning - Wikipedia

    en.wikipedia.org/wiki/Multiway_number_partitioning

    [2] Minimize the largest sum. This objective is equivalent to one objective for Identical-machines scheduling. There are k identical processors, and each number in S represents the time required to complete a single-processor job. The goal is to partition the jobs among the processors such that the makespan (the finish time of the last job) is ...

  4. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2. Although the partition problem is NP-complete, there is a ...

  5. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Given the two sorted lists, the algorithm can check if an element of the first array and an element of the second array sum up to T in time (/). To do that, the algorithm passes through the first array in decreasing order (starting at the largest element) and the second array in increasing order (starting at the smallest element).

  6. Balanced number partitioning - Wikipedia

    en.wikipedia.org/wiki/Balanced_number_partitioning

    The two subsets should contain floor(n/2) and ceiling(n/2) items. It is a variant of the partition problem. It is NP-hard to decide whether there exists a partition in which the sums in the two subsets are equal; see [4] problem [SP12]. There are many algorithms that aim to find a balanced partition in which the sum is as nearly-equal as possible.

  7. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  8. Add 1 to 2 tablespoons lemon juice and more salt and pepper to taste. Add 1 to 2 tablespoons of the reserved pasta water at a time, if desired, to loosen the sauce. The pasta will absorb the sauce ...

  9. 3-partition problem - Wikipedia

    en.wikipedia.org/wiki/3-partition_problem

    The 4-partition problem is a variant in which S contains n = 4 m integers, the sum of all integers is ⁠ ⁠, and the goal is to partition it into m quadruplets, all with a sum of T. It can be assumed that each integer is strictly between T /5 and T /3.

  1. Related searches snowflake sum over partition in python 2 lists hackerrank

    snowflake sum over partition in python 2 lists hackerrank solution