Search results
Results from the WOW.Com Content Network
If the meson is not pseudoscalar (J P = 0 −) or vector (J P = 1 −), J is added as a subscript. When the spectroscopic state of the meson is known, it is added in parentheses. When the spectroscopic state is unknown, mass (in MeV/c 2) is added in parentheses. When the meson is in its ground state, nothing is added in parentheses.
Mesons named with the letter "f" are scalar mesons (as opposed to a pseudo-scalar meson), and mesons named with the letter "a" are axial-vector mesons (as opposed to an ordinary vector meson) a.k.a. an isoscalar vector meson, while the letters "b" and "h" refer to axial-vector mesons with positive parity, negative C-parity, and quantum numbers I G of 1 + and 0 − respectively.
In particle physics, a kaon, also called a K meson and denoted K, [a] is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark) and an up or down antiquark (or quark).
) and eta prime meson (η′) are isosinglet mesons made of a mixture of up, down and strange quarks and their antiquarks. The charmed eta meson (η c) and bottom eta meson (η b) are similar forms of quarkonium; they have the same spin and parity as the (light) η defined, but are made of charm quarks and bottom quarks respectively.
In particle physics, a pion (/ ˈ p aɪ. ɒ n /, PIE-on) or pi meson, denoted with the Greek letter pi (π), is any of three subatomic particles: π 0, π +, and π −. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the ...
The field equations of condensed matter physics are remarkably similar to those of high energy particle physics. As a result, much of the theory of particle physics applies to condensed matter physics as well; in particular, there are a selection of field excitations, called quasi-particles, that can be created and explored. These include:
Scientists potentially uncovered a glueball particle, an enigmatic entity believed to be made entirely of the strong nuclear force's gluons.
s meson, which consists of the heavy bottom quark bound by the strong nuclear interaction to a strange antiquark. Now they have achieved the standard for a discovery in the field of particle physics, where the probability for a false observation must be proven to be less than about 5 in 10 million ( 5 / 10 000 000 = 1 / 2 000 000 ).