Search results
Results from the WOW.Com Content Network
Even though the bias–variance decomposition does not directly apply in reinforcement learning, a similar tradeoff can also characterize generalization. When an agent has limited information on its environment, the suboptimality of an RL algorithm can be decomposed into the sum of two terms: a term related to an asymptotic bias and a term due ...
The bias–variance tradeoff is often used to overcome overfit models. With a large set of explanatory variables that actually have no relation to the dependent variable being predicted, some variables will in general be falsely found to be statistically significant and the researcher may thus retain them in the model, thereby overfitting the ...
Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...
In economics a trade-off is expressed in terms of the opportunity cost of a particular choice, which is the loss of the most preferred alternative given up. [2] A tradeoff, then, involves a sacrifice that must be made to obtain a certain product, service, or experience, rather than others that could be made or obtained using the same required resources.
The Williamson tradeoff model is a theoretical model in the economics of industrial organization which emphasizes the tradeoff associated with horizontal mergers between gains resulting from lower costs of production and the losses associated with higher prices due to greater degree of monopoly power.
Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.
A good example of this is a study showed that when making food choices for the coming week, 74% of participants chose fruit, whereas when the food choice was for the current day, 70% chose chocolate. Insensitivity to sample size, the tendency to under-expect variation in small samples.
An example arises in the estimation of the population variance by sample variance. For a sample size of n , the use of a divisor n −1 in the usual formula ( Bessel's correction ) gives an unbiased estimator, while other divisors have lower MSE, at the expense of bias.