enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  3. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  4. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The Feynman Lectures on Physics (vol. 2, ch. 13–6) uses this method to derive the magnetic force on charge in parallel motion next to a current-carrying wire. See also Haskell [8] and Landau. [9] If the charge instead moves perpendicular to a current-carrying wire, electrostatics cannot be used to derive the magnetic force.

  5. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    The inhomogeneous Maxwell equation leads to the continuity equation: =, = implying conservation of charge. Maxwell's laws above can be generalised to curved spacetime by simply replacing partial derivatives with covariant derivatives:

  6. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    [24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...

  7. A Dynamical Theory of the Electromagnetic Field - Wikipedia

    en.wikipedia.org/wiki/A_Dynamical_Theory_of_the...

    This is simply the Lorentz force law on a per-unit-charge basis — although Maxwell's equation first appeared at equation in "On Physical Lines of Force" in 1861, [6] 34 years before Lorentz derived his force law, which is now usually presented as a supplement to the four "Maxwell's equations".

  8. Maxwell stress tensor - Wikipedia

    en.wikipedia.org/wiki/Maxwell_stress_tensor

    All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...

  9. On Physical Lines of Force - Wikipedia

    en.wikipedia.org/wiki/On_Physical_Lines_of_Force

    In it, Maxwell derived the equations of electromagnetism in conjunction with a "sea" of "molecular vortices" which he used to model Faraday's lines of force. Maxwell had studied and commented on the field of electricity and magnetism as early as 1855/56 when "On Faraday's Lines of Force" [ 2 ] was read to the Cambridge Philosophical Society .