enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards.

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  4. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  5. Cartesian product of graphs - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product_of_graphs

    The Cartesian product of n edges is a hypercube: =. Thus, the Cartesian product of two hypercube graphs is another hypercube: Q i Q j = Q i+j. The Cartesian product of two median graphs is another median graph. The graph of vertices and edges of an n-prism is the Cartesian product graph K 2 C n.

  6. Finitary relation - Wikipedia

    en.wikipedia.org/wiki/Finitary_relation

    In mathematics, a finitary relation over a sequence of sets X 1, ..., X n is a subset of the Cartesian product X 1 × ... × X n; that is, it is a set of n-tuples (x 1, ..., x n), each being a sequence of elements x i in the corresponding X i. [1] [2] [3] Typically, the relation describes a possible connection between the elements of an n-tuple ...

  7. Product topology - Wikipedia

    en.wikipedia.org/wiki/Product_topology

    The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...

  8. Currying - Wikipedia

    en.wikipedia.org/wiki/Currying

    In essence, the suspension can be seen as the cartesian product of with the unit interval, modulo an equivalence relation to turn the interval into a loop. The curried form then maps the space X {\displaystyle X} to the space of functions from loops into Z {\displaystyle Z} , that is, from X {\displaystyle X} into Ω Z {\displaystyle \Omega Z ...

  9. Product order - Wikipedia

    en.wikipedia.org/wiki/Product_order

    The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]