Search results
Results from the WOW.Com Content Network
According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...
Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s, [170] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. [171] Gravity assists through planetary flybys can be used to reduce the energy required to reach Jupiter.
Although the impacts took place on the side of Jupiter hidden from Earth, Galileo, then at a distance of 1.6 AU (240 million km; 150 million mi) from the planet, was able to see the impacts as they occurred. Jupiter's rapid rotation brought the impact sites into view for terrestrial observers a few minutes after the collisions. [34]
As I wrote in that article, Jupiter’s main ring is primarily made of dust, and may be due to small particles impacting the two moons Metis and Adrastea; sunlight would push on the dust part
In the rings of Saturn, the Cassini Division is a gap between the inner B Ring and the outer A Ring that has been cleared by a 2:1 resonance with the moon Mimas. (More specifically, the site of the resonance is the Huygens Gap , which bounds the outer edge of the B Ring .)
The fluid solution is appropriate for bodies that are only loosely held together, such as a comet. For instance, comet Shoemaker–Levy 9's decaying orbit around Jupiter passed within its Roche limit in July 1992, causing it to fragment into a number of smaller pieces. On its next approach in 1994 the fragments crashed into the planet.
This ring system may have originated from a large asteroid that passed by Earth at this time and had a significant amount of debris stripped by Earth's gravitational pull, forming a ring system. Evidence for this ring comes from impact craters from the Ordovician meteor event appearing to cluster in a distinctive band around the Earth's equator ...
At one point, the two may fall into sync, at which time Jupiter's constant gravitational tugs could accumulate and pull Mercury off course, with 1–2% probability, 3–4 billion years into the future. This could eject it from the Solar System altogether [1] or send it on a collision course with Venus, the Sun, or Earth. [11]