Search results
Results from the WOW.Com Content Network
Pulmonary edema (British English: oedema), also known as pulmonary congestion, is excessive fluid accumulation in the tissue or air spaces (usually alveoli) of the lungs. [1] This leads to impaired gas exchange , most often leading to shortness of breath ( dyspnea ) which can progress to hypoxemia and respiratory failure .
The pathophysiology of acute respiratory distress syndrome involves fluid accumulation in the lungs not explained by heart failure (noncardiogenic pulmonary edema). It is typically provoked by an acute injury to the lungs that results in flooding of the lungs' microscopic air sacs responsible for the exchange of gases such as oxygen and carbon dioxide with capillaries in the lungs. [1]
High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above 2,500 meters (8,200 ft). [2] HAPE is a severe presentation of altitude sickness. Cases have also been reported between 1,500–2,500 metres or 4,900–8,200 feet in people who ...
NPPE develops as a result of significant negative pressure generated in the chest cavity by inspiration against an upper airway obstruction. These negative pressures in the chest lead to increase venous supply to the right side of the heart while simultaneously creating more resistance for the left side of the heart to supply blood to the rest of the body (). [4]
In 1994, a new definition was recommended by the American-European Consensus Conference Committee [6] [10] which recognized the variability in severity of pulmonary injury. [51] The definition required the following criteria to be met: acute onset, persistent dyspnea; bilateral infiltrates on chest radiograph consistent with pulmonary edema
A pleural effusion is accumulation of excessive fluid in the pleural space, the potential space that surrounds each lung.Under normal conditions, pleural fluid is secreted by the parietal pleural capillaries at a rate of 0.6 millilitre per kilogram weight per hour, and is cleared by lymphatic absorption leaving behind only 5–15 millilitres of fluid, which helps to maintain a functional ...
They are suggestive for the diagnosis of congestive heart failure, but are also seen in various non-cardiac conditions such as pulmonary fibrosis, interstitial deposition of heavy metal particles or carcinomatosis of the lung. Chronic Kerley B lines may be caused by fibrosis or hemosiderin deposition caused by recurrent pulmonary edema.
These abnormal phenomena are usually seen in chronic bronchitis, asthma, hepatopulmonary syndrome, and acute pulmonary edema. A high V/Q ratio decreases pCO 2 and increases pO 2 in alveoli. Because of the increased dead space ventilation, the arterial pO 2 is reduced and thus also the peripheral oxygen saturation is lower than normal, leading ...