Search results
Results from the WOW.Com Content Network
Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.
Thomson scattering is the classical elastic quantitative interpretation of the scattering process, [26] and this can be seen to happen with lower, mid-energy, photons. The classical theory of an electromagnetic wave scattered by charged particles, cannot explain low intensity shifts in wavelength.
Later analysis showed Thomson's scattering model could not account for large scattering. The maximum angular deflection from electron scattering or from the positive sphere each come to less than 0.02°; even many such scattering events compounded would result in less than a one degree average deflection and a probability of scattering through ...
Picture of non-linear inverse Compton scattering. Non-linear inverse Compton scattering (NICS), also known as non-linear Compton scattering and multiphoton Compton scattering, is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon (X-ray or gamma ray) during the interaction with a charged particle, in many cases an electron. [1]
Before this derivation, the electron cross section had been classically derived by the British physicist and discoverer of the electron, J.J. Thomson. However, scattering experiments showed significant deviations from the results predicted by the Thomson cross section.
The Sunyaev–Zeldovich effect (named after Rashid Sunyaev and Yakov B. Zeldovich and often abbreviated as the SZ effect) is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons.
X-ray scattering is determined by the density of electrons within the crystal. Since the energy of an X-ray is much greater than that of a valence electron, the scattering may be modeled as Thomson scattering, the elastic interaction of an electromagnetic ray with a charged particle.
Scattering theory is a framework for studying and understanding the scattering of waves and particles. Wave scattering corresponds to the collision and scattering of a wave with some material object, for instance (sunlight) scattered by rain drops to form a rainbow.