enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel integral - Wikipedia

    en.wikipedia.org/wiki/Fresnel_integral

    The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.

  3. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    Given a complex number z, there is not a unique complex number w satisfying erf w = z, so a true inverse function would be multivalued. However, for −1 < x < 1 , there is a unique real number denoted erf −1 x satisfying erf ⁡ ( erf − 1 ⁡ x ) = x . {\displaystyle \operatorname {erf} \left(\operatorname {erf} ^{-1}x\right)=x.}

  4. Kirchhoff integral theorem - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff_integral_theorem

    Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) [1] is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that ...

  5. Stationary phase approximation - Wikipedia

    en.wikipedia.org/wiki/Stationary_phase_approximation

    In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to functions given by integration against a rapidly-varying complex exponential. This method originates from the 19th century, and is due to George Gabriel Stokes and Lord Kelvin . [ 1 ]

  6. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, [3] uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first order derivative at all points on an arbitrary closed surface as the boundary of some volume including P.

  7. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Fresnel diffraction of circular aperture, plotted with Lommel functions. This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave.

  8. Nonelementary integral - Wikipedia

    en.wikipedia.org/wiki/Nonelementary_Integral

    In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]

  9. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    [1] [2] The behavior of Fresnel integrals can be illustrated by an Euler spiral, a connection first made by Marie Alfred Cornu in 1874. [3] Euler's spiral is a type of superspiral that has the property of a monotonic curvature function. [4] The Euler spiral has applications to diffraction computations.