enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    Energy shares the same unit of measurement with work (Joules) because the energy from the object doing work is transferred to the other objects it interacts with when work is being done. [17] The workenergy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body ...

  3. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid ( air is the most common example).

  4. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged.

  5. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  6. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    A contact equilibrium may be regarded also as an exchange equilibrium. There is a zero balance of rate of transfer of some quantity between the two systems in contact equilibrium. For example, for a wall permeable only to heat, the rates of diffusion of internal energy as heat between the two systems are equal and opposite.

  7. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. [1] Therefore, even at absolute zero, atoms and molecules retain some vibrational motion.

  8. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The system's energy increases as work is done on the system and in this particular case, the energy increase of the system is manifested as an increase in the system's gravitational potential energy. Work added to the system increases the potential energy of the system. When matter is transferred into a system, the internal energy and potential ...

  9. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    The maximum work is thus regarded as the diminution of the free, or available, energy of the system (Gibbs free energy G at T = constant, P = constant or Helmholtz free energy A at T = constant, V = constant), whilst the heat given out is usually a measure of the diminution of the total energy of the system (Internal energy).