Search results
Results from the WOW.Com Content Network
In physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. [1] In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime.
Glasses present a challenge to the ergodic hypothesis; time scales are assumed to be in the millions of years, but results are contentious. Spin glasses present particular difficulties. Formal mathematical proofs of ergodicity in statistical physics are hard to come by; most high-dimensional many-body systems are assumed to be ergodic, without ...
Ergodic theory is often concerned with ergodic transformations.The intuition behind such transformations, which act on a given set, is that they do a thorough job "stirring" the elements of that set. E.g. if the set is a quantity of hot oatmeal in a bowl, and if a spoonful of syrup is dropped into the bowl, then iterations of the inverse of an ergodic transformation of the oatmeal will not ...
In probability theory, a stationary ergodic process is a stochastic process which exhibits both stationarity and ergodicity.In essence this implies that the random process will not change its statistical properties with time and that its statistical properties (such as the theoretical mean and variance of the process) can be deduced from a single, sufficiently long sample (realization) of the ...
But Liouville's theorem does not imply that the ergodic hypothesis holds for all Hamiltonian systems. The ergodic hypothesis is often assumed in the statistical analysis of computational physics. The analyst would assume that the average of a process parameter over time and the average over the statistical ensemble are the same. This assumption ...
A new study explains how mitochondria act as “reservoirs” to store NAD for cells to use, which could help scientists come up with NAD-boosting therapies to combat aging and age-related diseases.
In mathematics, ergodic flows occur in geometry, through the geodesic and horocycle flows of closed hyperbolic surfaces.Both of these examples have been understood in terms of the theory of unitary representations of locally compact groups: if Γ is the fundamental group of a closed surface, regarded as a discrete subgroup of the Möbius group G = PSL(2,R), then the geodesic and horocycle flow ...
This riddle is particularly funny because it usually throws people for a pretty good loop before they get the hang of it! Related: 140 Hard Riddles That Are Challenging for Kids and Adults