Search results
Results from the WOW.Com Content Network
Specific gravity for solids and liquids is nearly always measured with respect to water at its densest (at 4 °C or 39.2 °F); for gases, the reference is air at room temperature (20 °C or 68 °F). The term "relative density" (abbreviated r.d. or RD ) is preferred in SI , whereas the term "specific gravity" is gradually being abandoned.
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
The Twaddell scale is a hydrometer scale used for measuring the specific gravity of liquids relative to water. On this scale, a specific gravity of 1.000 is reported as 0, and a specific gravity of 2.000 is reported as 200. [1]
Water – Density and specific weight; Temperature dependence of the density of water – Conversions of density units; A delicious density experiment Archived July 18, 2015, at the Wayback Machine; Water density calculator Archived July 13, 2011, at the Wayback Machine Water density for a given salinity and temperature.
Consider, at near room temperature: +100 °Bé (specific gravity, 3.325) would be among the densest fluids known (except some liquid metals), such as diiodomethane. Near 0 °Bé would be approximately the density of water. −100 °Bé (specific gravity, 0.615) would be among the lightest fluids known, such as liquid butane.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Heat of vaporization of water from melting to critical temperature. Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C)—the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of ...
The term specific heat may also refer to the ratio between the specific heat capacities of a substance at a given temperature and of a reference substance at a reference temperature, such as water at 15 °C; [5] much in the fashion of specific gravity. Specific heat capacity is also related to other intensive measures of heat capacity with ...