Search results
Results from the WOW.Com Content Network
CL2 may refer to: . Chlorine gas, Cl 2; the Clausen function of order 2, Cl 2; the Clifford algebra on , (); CAS latency 2, a rating of computer memory; Google Calendar, a time-management web application (from a URL fragment used in early versions)
Chlorine dioxide is a chemical compound with the formula ClO 2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C.
Dichlorine monoxide (Cl 2 O) is a brownish-yellow gas (red-brown when solid or liquid) which may be obtained by reacting chlorine gas with yellow mercury(II) oxide. It is very soluble in water, in which it is in equilibrium with hypochlorous acid (HOCl), of which it is the anhydride.
2 NaCl + 2 H 2 O → 2 NaOH + H 2 + Cl 2. Without a membrane, the OH − ions produced at the cathode are free to diffuse throughout the electrolyte. As the electrolyte becomes more basic due to the production of OH −, less Cl 2 emerges from the solution as it begins to disproportionate to form chloride and hypochlorite ions at the anode:
2 Cl 2 + 2 NaHCO 3 → Cl 2 O + 2 CO 2 + 2 NaCl + H 2 O. This reaction can be performed in the absence of water but requires heating to 150–250 °C; as dichlorine monoxide is unstable at these temperatures [4] it must therefore be continuously removed to prevent thermal decomposition. 2 Cl 2 + Na 2 CO 3 → Cl 2 O + CO 2 + 2 NaCl
Values can be higher than 100% because hypochlorite ion has a molecular weight of 51.45 g/mol, whereas dichlorine Cl 2 has a molecular weight of 70.90 g/mol. Dichlorine has a reference bleaching potential of 100% for its molecular weight. Hypochlorite (ClO) also has a molecule-to-molecule bleaching potential the same as dichlorine.
dichlorine trioxide, Cl 2 O 3 as possible isomer Cl−O−ClO 2, chlorine (I,V) oxide; dichlorine trioxide, Cl 2 O 3 as hypothetical isomer O−Cl−O−Cl−O, chlorine (III) oxide; dichlorine tetroxide, also known as chlorine perchlorate, Cl 2 O 4 or ClOClO 3, chlorine (I,VII) oxide; dichlorine pentoxide, Cl 2 O 5 or ClOOClO 3, is hypothetical
As a halogen, chlorine is a highly efficient disinfectant, and is added to public water supplies to kill disease-causing pathogens, such as bacteria, viruses, and protozoans, that commonly grow in water supply reservoirs, on the walls of water mains and in storage tanks. [16]