enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    A central problem in algorithmic graph theory is the shortest path problem. One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph.

  3. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...

  4. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  5. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  6. Contraction hierarchies - Wikipedia

    en.wikipedia.org/wiki/Contraction_hierarchies

    The shortest path in a graph can be computed using Dijkstra's algorithm but, given that road networks consist of tens of millions of vertices, this is impractical. [1] Contraction hierarchies is a speed-up method optimized to exploit properties of graphs representing road networks. [2] The speed-up is achieved by creating shortcuts in a ...

  7. Brandes' algorithm - Wikipedia

    en.wikipedia.org/wiki/Brandes'_algorithm

    The number of shortest paths between and every vertex is calculated using breadth-first search. The breadth-first search starts at s {\displaystyle s} , and the shortest distance d ( v ) {\displaystyle d(v)} of each vertex from s {\displaystyle s} is recorded, dividing the graph into discrete layers.

  8. Bellman–Ford algorithm - Wikipedia

    en.wikipedia.org/wiki/Bellman–Ford_algorithm

    The Bellman–Ford algorithm is an algorithm that computes shortest paths from a single source vertex to all of the other vertices in a weighted digraph. [1] It is slower than Dijkstra's algorithm for the same problem, but more versatile, as it is capable of handling graphs in which some of the edge weights are negative numbers. [2]

  9. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    Consider finding a shortest path for traveling between two cities by car, as illustrated in Figure 1. Such an example is likely to exhibit optimal substructure. That is, if the shortest route from Seattle to Los Angeles passes through Portland and then Sacramento, then the shortest route from Portland to Los Angeles must pass through Sacramento too.