Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
The VLF radio waves were previously thought to be generated by turbulence in the radiation belts, but recent work by J.L. Green of the Goddard Space Flight Center [citation needed] compared maps of lightning activity collected by the Microlab 1 spacecraft with data on radio waves in the radiation-belt gap from the IMAGE spacecraft; the results ...
The atmosphere has a mass of about 5.15 × 10 18 kg, [2] three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner with increasing altitude, with no definite boundary between the atmosphere and outer space.
The F-region is the highest region of the ionosphere. Consisting of the F1 and F2 layers, its distance above the Earth's surface is approximately 200–500 km. [7] The duration of these storms are around a day and reoccur every approximately 27.3 days. [6] Most ionospheric abnormalities occur in the F2 and E layers of the ionosphere.
Post-eruptive loops in the wake of a solar flare, image taken by the TRACE satellite (photo by NASA). In solar physics, a solar particle event (SPE), also known as a solar energetic particle event or solar radiation storm, [a] [1] is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's atmosphere during a solar flare or in ...
EUV was a 1-dimension limb imager designed to observe height and density of the daytime ionosphere by detecting the glow of oxygen ions and other species at wavelengths between 55 and 85 nm. FUV was a 2-dimension imager that observes the limb and below at 135 and 155 nm, where bright emissions of atomic oxygen and molecular nitrogen are found. [19]
SpaceX’s rocket explosion in November 2023 created a massive hole in the Earth's ionosphere, providing scientists with a rare opportunity to study its effects.
The ionosphere, an ionized portion of the upper atmosphere which includes the upper mesosphere, thermosphere, and lower exosphere and on Earth lies between the altitudes of 48 and 965 kilometres (30 and 600 mi)