Search results
Results from the WOW.Com Content Network
Torque-induced precession (gyroscopic precession) is the phenomenon in which the axis of a spinning object (e.g., a gyroscope) describes a cone in space when an external torque is applied to it. The phenomenon is commonly seen in a spinning toy top , but all rotating objects can undergo precession.
The amount of aerodynamic jump is dependent on cross wind speed, the gyroscopic stability of the bullet at the muzzle and if the barrel twist is clockwise or anti-clockwise. Like the wind direction reversing the twist direction will reverse the aerodynamic jump direction. A somewhat less obvious effect is caused by head or tailwinds.
Precession of a gyroscope. In a similar way to how the force from the table generates this phenomenon of precession in the spinning gyro, the gravitational pull of the Sun and Moon on the Earth's equatorial bulge generates a very slow precession of the Earth's axis (see §Cause). This off-center push or pull causes a torque, and a torque on a ...
A gyroscope is an essential component of a gyrocompass, but they are different devices; a gyrocompass is built to use the effect of gyroscopic precession, which is a distinctive aspect of the general gyroscopic effect. [2] [3] Gyrocompasses, such as the fibre optic gyrocompass are widely used to provide a heading for navigation on ships. [4]
Gyroscopic precession is torque induced. It is the rate of change of the angular momentum that is produced by the applied torque. Precession produces counterintuitive dynamic results such as a spinning top not falling over. Precession is used in aerospace applications for sensing changes of attitude and direction.
In general relativity, Lense–Thirring precession or the Lense–Thirring effect (Austrian German: [ˈlɛnsɛ ˈtɪrɪŋ]; named after Josef Lense and Hans Thirring) is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth.
One can attempt to break down the de Sitter precession into a kinematic effect called Thomas precession combined with a geometric effect caused by gravitationally curved spacetime. At least one author [ 5 ] does describe it this way, but others state that "The Thomas precession comes into play for a gyroscope on the surface of the Earth ...
Axial parallelism of Earth. Axial parallelism (also called gyroscopic stiffness, inertia or rigidity, or "rigidity in space") is the characteristic of a rotating body in which the direction of the axis of rotation remains fixed as the object moves through space. In astronomy, this characteristic is found in astronomical bodies in orbit.