enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication. It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity , although the naive algorithm is often better for smaller matrices.

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/.../Matrix_multiplication_algorithm

    The first to be discovered was Strassen's algorithm, devised by Volker Strassen in 1969 and often referred to as "fast matrix multiplication". It is based on a way of multiplying two 2 × 2 -matrices which require only 7 multiplications (instead of the usual 8), at the expense of several additional addition and subtraction operations.

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Strassen's algorithm improves on naive matrix multiplication through a divide-and-conquer approach. The key observation is that multiplying two 2 × 2 matrices can be done with only 7 multiplications, instead of the usual 8 (at the expense of 11 additional addition and subtraction operations).

  5. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes. Schönhage (on the right) and Strassen (on the left) playing chess in ...

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...

  7. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Schönhage–Strassen algorithm ⁡ ⁡ ... Algorithm Complexity Matrix multiplication: ... The Art of Computer Programming. Vol. 2 (3rd ed.).

  8. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    A common variation of gemm is the gemm3m, which calculates a complex product using "three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions", an algorithm similar to Strassen algorithm first described by Peter Ungar. [24]

  9. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Currently, the algorithm with the best computational complexity is a 2019 algorithm of David Harvey and Joris van der Hoeven, which uses the strategies of using number-theoretic transforms introduced with the Schönhage–Strassen algorithm to multiply integers using only (⁡) operations. [14]