enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  3. Adaptive step size - Wikipedia

    en.wikipedia.org/wiki/Adaptive_step_size

    Let us now apply Euler's method again with a different step size to generate a second approximation to y(t n+1). We get a second solution, which we label with a (). Take the new step size to be one half of the original step size, and apply two steps of Euler's method. This second solution is presumably more accurate.

  4. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    This is another formulation of a composite Simpson's rule: instead of applying Simpson's rule to disjoint segments of the integral to be approximated, Simpson's rule is applied to overlapping segments, yielding [6] [() + + + + = + + + + ()].

  5. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.

  6. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    1 Method. 2 Averaging noise to reduce errors. ... 1 (error-free) 110 1 101 1 ... Block codes work on fixed-size blocks (packets) of bits or symbols of predetermined ...

  7. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named after Leonhard Euler who described it in 1768. The Euler method is an example of an explicit method. This means that the new value y n+1 is defined in terms of things that are already known, like y n.

  8. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.

  9. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pre-pruning methods are considered to be more efficient because they do not induce an entire set, but rather trees remain small from the start. Prepruning methods share a common problem, the horizon effect. This is to be understood as the undesired premature termination of the induction by the stop criterion.