enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits. By 1914, experiments by physicists Ernest Rutherford, Henry Moseley, James Franck and Gustav Hertz had largely established the structure of an atom as a dense nucleus of positive charge surrounded by lower-mass electrons. [51]

  3. Electron mass - Wikipedia

    en.wikipedia.org/wiki/Electron_mass

    In particle physics, the electron mass (symbol: m e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics . It has a value of about 9.109 × 10 −31 kilograms or about 5.486 × 10 −4 daltons , which has an energy-equivalent of about 8.187 × 10 −14 joules ...

  4. Positron - Wikipedia

    en.wikipedia.org/wiki/Positron

    Robert Oppenheimer argued strongly against the proton being the negative-energy electron solution to Dirac's equation. He asserted that if it were, the hydrogen atom would rapidly self-destruct. [8] Weyl in 1931 showed that the negative-energy electron must have the same mass as that of the positive-energy electron. [9]

  5. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    The electron is the least massive of these particles by four orders of magnitude at 9.11 × 10 −31 kg, with a negative electrical charge and a size that is too small to be measured using available techniques. [36] It was the lightest particle with a positive rest mass measured, until the discovery of neutrino mass. Under ordinary conditions ...

  6. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...

  7. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    A proton is a stable subatomic particle, symbol p, H +, or 1 H + with a positive electric charge of +1 e (elementary charge).Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio).

  8. Atomic mass - Wikipedia

    en.wikipedia.org/wiki/Atomic_mass

    Thus, the atomic mass of a carbon-12 atom is 12 Da by definition, but the relative isotopic mass of a carbon-12 atom is simply 12. The sum of relative isotopic masses of all atoms in a molecule is the relative molecular mass. The atomic mass of an isotope and the relative isotopic mass refers to a certain specific isotope of an element.

  9. Muon - Wikipedia

    en.wikipedia.org/wiki/Muon

    The positive muon is also not attracted to the nucleus of atoms. Instead, it binds a random electron and with this electron forms an exotic atom known as muonium (mu) atom. In this atom, the muon acts as the nucleus. The positive muon, in this context, can be considered a pseudo-isotope of hydrogen with one ninth of the mass of the proton.