enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  3. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The angles of proper spherical triangles are (by convention) less than π, so that < + + < (Todhunter, [1] Art.22,32). In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians.

  4. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.

  5. Angular defect - Wikipedia

    en.wikipedia.org/wiki/Angular_defect

    For a polyhedron, the defect at a vertex equals 2π minus the sum of all the angles at the vertex (all the faces at the vertex are included). If a polyhedron is convex, then the defect of each vertex is always positive. If the sum of the angles exceeds a full turn, as occurs in some vertices of many non-convex polyhedra, then the defect is ...

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Fig. 1a – Sine and cosine of an angle θ defined using the unit circle Indication of the sign and amount of key angles according to rotation direction Trigonometric ratios can also be represented using the unit circle , which is the circle of radius 1 centered at the origin in the plane. [ 37 ]

  7. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR 2 where R is the circumradius. [4]: p. 73 The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR 2 − ⁠ 1 / 4 ⁠ ns 2, where s is the side length and R is the ...

  8. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  9. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    The formula can be derived as a telescoping product of either the areas or perimeters of nested polygons converging to a circle. Alternatively, repeated use of the half-angle formula from trigonometry leads to a generalized formula, discovered by Leonhard Euler, that has Viète's formula as a special case. Many similar formulas involving nested ...