enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Color histogram - Wikipedia

    en.wikipedia.org/wiki/Color_histogram

    In image processing and photography, a color histogram is a representation of the distribution of colors in an image.For digital images, a color histogram represents the number of pixels that have colors in each of a fixed list of color ranges, that span the image's color space, the set of all possible colors.

  3. Image histogram - Wikipedia

    en.wikipedia.org/wiki/Image_histogram

    An image histogram is a type of histogram that acts as a graphical representation of the tonal distribution in a digital image. [1] It plots the number of pixels for each tonal value. By looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution at a glance.

  4. Image color transfer - Wikipedia

    en.wikipedia.org/wiki/Image_color_transfer

    Color transfer processing can serve two different purposes: one is calibrating the colors of two cameras for further processing using two or more sample images, the second is adjusting the colors of two images for perceptual visual compatibility. Color calibration is an important pre-processing task in computer vision applications. Many ...

  5. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    The histogram can also be applied on a per-pixel basis where the resulting information is used to determine the most frequent color for the pixel location. This approach segments based on active objects and a static environment, resulting in a different type of segmentation useful in video tracking .

  6. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]

  7. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    The final step for the BoW model is to convert vector-represented patches to "codewords" (analogous to words in text documents), which also produces a "codebook" (analogy to a word dictionary). A codeword can be considered as a representative of several similar patches. One simple method is performing k-means clustering over all the vectors. [7]

  8. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization often produces unrealistic effects in photographs; however it is very useful for scientific images like thermal, satellite or x-ray images, often the same class of images to which one would apply false-color. Also histogram equalization can produce undesirable effects (like visible image gradient) when applied to images ...

  9. Normalization (image processing) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(image...

    max is the maximum value for color level in the input image within the selected kernel. min is the minimum value for color level in the input image within the selected kernel. [4] Local contrast stretching considers each range of color palate in the image (R, G, and B) separately, providing a set of minimum and maximum values for each color palate.