Search results
Results from the WOW.Com Content Network
In probability and statistics, the Kumaraswamy's double bounded distribution is a family of continuous probability distributions defined on the interval (0,1). It is similar to the beta distribution, but much simpler to use especially in simulation studies since its probability density function, cumulative distribution function and quantile functions can be expressed in closed form.
The Kumaraswamy distribution is as versatile as the Beta distribution but has simple closed forms for both the cdf and the pdf. The logit metalog distribution, which is highly shape-flexible, has simple closed forms, and can be parameterized with data using linear least squares.
It serves as an alternative to the beta and Kumaraswamy distributions for modeling double-bounded random variables. The MK distribution was originally proposed by Sagrillo, Guerra, and Bayer [1] through a transformation of the Kumaraswamy distribution. Its density exhibits an increasing-decreasing-increasing shape, which is not characteristic ...
Download as PDF; Printable version; ... Kumaraswamy distribution; L. Landau distribution; ... Text is available under the Creative Commons Attribution-ShareAlike 4.0 ...
Kumaraswamy or Kumaraswami is an Indian male given name. It may also refer to: Murugan, also called Kumaraswami or Kartikeya, the Hindu god of war; Kumaraswamy distribution, a distribution form related to probability theory and statistics; Kumaraswamy Layout, a residential locality in southern Bangalore, India
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
Stein's method is a general method in probability theory to obtain bounds on the distance between two probability distributions with respect to a probability metric.It was introduced by Charles Stein, who first published it in 1972, [1] to obtain a bound between the distribution of a sum of -dependent sequence of random variables and a standard normal distribution in the Kolmogorov (uniform ...