Search results
Results from the WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
Wolfram Language WolframAlpha ( / ˈ w ʊ l f . r əm -/ WUULf-rəm- ) is an answer engine developed by Wolfram Research . [ 1 ] It is offered as an online service that answers factual queries by computing answers from externally sourced data.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...
Wolfram Alpha: Wolfram Research: 2009 2013: Pro version: $4.99 / month, Pro version for students: $2.99 / month, ioRegular version: free Proprietary: Online computer algebra system with step-by step solutions. Xcas/Giac: Bernard Parisse 2000 2000 1.9.0-99: May 2024: Free GPL: General CAS, also adapted for the HP Prime. Compatible modes for ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
1 The cross product. 2 The cap product. 3 The slant product. 4 The cup product. 5 See also. 6 References. Toggle the table of contents. Products in algebraic topology ...
are solved using cross-multiplication, since the missing b term is implicitly equal to 1: a 1 = x d . {\displaystyle {\frac {a}{1}}={\frac {x}{d}}.} Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator .
The cross product and the Lie bracket operation [,] both satisfy the Jacobi identity. In analytical mechanics , the Jacobi identity is satisfied by the Poisson brackets . In quantum mechanics , it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket .