enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    The most general proper Lorentz transformation Λ(v, θ) includes a boost and rotation together, and is a nonsymmetric matrix. As special cases, Λ(0, θ) = R(θ) and Λ(v, 0) = B(v). An explicit form of the general Lorentz transformation is cumbersome to write down and will not be given here.

  3. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Derivation of Lorentz transformation using time dilation and length contraction Now substituting the length contraction result into the Galilean transformation (i.e. x = ℓ ), we have: x ′ γ = x − v t {\displaystyle {\frac {x'}{\gamma }}=x-vt}

  5. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations.

  6. Velocity-addition formula - Wikipedia

    en.wikipedia.org/wiki/Velocity-addition_formula

    A proof using 4-vectors and Lorentz transformation matrices Since a relativistic transformation rotates space and time into each other much as geometric rotations in the plane rotate the x - and y -axes, it is convenient to use the same units for space and time, otherwise a unit conversion factor appears throughout relativistic formulae, being ...

  7. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The theory of special relativity plays an important role in the modern theory of classical electromagnetism.It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another.

  8. Relativistic electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Relativistic_electromagnetism

    Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations. Electromechanics

  9. d'Alembert operator - Wikipedia

    en.wikipedia.org/wiki/D'Alembert_operator

    (Some authors alternatively use the negative metric signature of (− + + +), with =, = = =.) Lorentz transformations leave the Minkowski metric invariant, so the d'Alembertian yields a Lorentz scalar. The above coordinate expressions remain valid for the standard coordinates in every inertial frame.