Search results
Results from the WOW.Com Content Network
The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.
The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...
The Schumann resonances are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonance is due to the space between the surface of the Earth and the conductive ionosphere acting as a waveguide. The limited dimensions of the earth cause this waveguide to act as a resonant ...
Measurements of Schumann resonances at only a few stations around the world can monitor the global lightning activity fairly well. [14] One can apply the dispersive property of the Earth–ionosphere waveguide by measuring the group velocity of a sferic signal at different frequencies together with its direction of arrival. The group time delay ...
Increase of amplitude as damping decreases and frequency approaches resonant frequency of a driven damped simple harmonic oscillator. [1] [2]Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its resonant frequency, defined as the frequency that generates the maximum amplitude response in the system.
Winfried Otto Schumann (May 20, 1888 – September 22, 1974) was a German physicist and electrical engineer who predicted the Schumann resonances, a series of low-frequency resonances caused by lightning discharges in the atmosphere.
Abrupt change of impedance (e.g. open or short) in a transmission line causes reflection of the transmitted signal. Two such reflectors on a transmission line evoke standing waves between them and thus act as a one-dimensional resonator, with the resonance frequencies determined by their distance and the effective dielectric constant of the ...
Moreover, the eigenfrequencies of the Earth-ionospheric waveguide, the Schumann resonances at about 7.5 Hz, are used to determine the global thunderstorm activity. [ 134 ] In addition to ground-based lightning detection, several instruments aboard satellites have been constructed to observe lightning distribution.