Search results
Results from the WOW.Com Content Network
Fast R-CNN. While the original R-CNN independently computed the neural network features on each of as many as two thousand regions of interest, Fast R-CNN runs the neural network once on the whole image. [8] RoI pooling to size 2x2. In this example region proposal (an input parameter) has size 7x5.
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]
Earley's algorithm is a top-down dynamic programming algorithm. In the following, we use Earley's dot notation: given a production X → αβ, the notation X → α • β represents a condition in which α has already been parsed and β is expected. Input position 0 is the position prior to input.
A convolutional neural network (CNN, or ConvNet or shift invariant or space invariant) is a class of deep network, composed of one or more convolutional layers with fully connected layers (matching those in typical ANNs) on top. [17] [18] It uses tied weights and pooling layers. In particular, max-pooling. [19]
Water Cycle Algorithm WCA 2012 Backtracking Search Algorithm BSA Evolutionary-based - 2013 [37] Black Hole Algorithm BH Nature-inspired Physics/Chemistry-based 2013 [38] Dolphin Echolocation DE Nature-inspired Bio-inspired 2013 [39] Animal Migration Optimization AMO Nature-inspired Swarm-based 2013 [40] Keshtel Algorithm KA Nature-inspired 2014 ...
Logistic activation function. The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights.
LeNet-5 architecture (overview). LeNet is a series of convolutional neural network structure proposed by LeCun et al. [1] The earliest version, LeNet-1, was trained in 1989.In general, when "LeNet" is referred to without a number, it refers to LeNet-5 (1998), the most well-known version.