Search results
Results from the WOW.Com Content Network
R-CNN architecture Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision , and specifically object detection and localization. [ 1 ] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the ...
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
It would be calculated, for example, as: [(input width 227 - kernel width 11) / stride 4] + 1 = [(227 - 11) / 4] + 1 = 55. Since the kernel output is the same length as width, its area is 55×55.) AlexNet is a convolutional neural network. In 1980, Kunihiko Fukushima proposed an early CNN named neocognitron.
The models and the code were released under Apache 2.0 license on GitHub. [4] An individual Inception module. On the left is a standard module, and on the right is a dimension-reduced module. A single Inception dimension-reduced module. The Inception v1 architecture is a deep CNN composed of 22 layers. Most of these layers were "Inception modules".
Viterbi algorithm explanation with the focus on hardware implementation issues. r=1/6 k=15 coding for the Cassini mission to Saturn. Online Generator of optimized software Viterbi decoders (GPL). GPL Viterbi decoder software for four standard codes. Description of a k=24 Viterbi decoder, believed to be the largest ever in practical use.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
The idea is to add structures called "capsules" to a convolutional neural network (CNN), and to reuse output from several of those capsules to form more stable (with respect to various perturbations) representations for higher capsules. [2] The output is a vector consisting of the probability of an observation, and a pose for that observation.