enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Deep Learning Applied in Computer Vision.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Deep_Learning_Applied...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  5. Artificial Intelligence: A Modern Approach - Wikipedia

    en.wikipedia.org/wiki/Artificial_Intelligence:_A...

    AIMA gives detailed information about the working of algorithms in AI. The book's chapters span from classical AI topics like searching algorithms and first-order logic, propositional logic and probabilistic reasoning to advanced topics such as multi-agent systems, constraint satisfaction problems, optimization problems, artificial neural networks, deep learning, reinforcement learning, and ...

  6. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j relies on the widely used programming language Java, though it is compatible with Clojure and includes a Scala application programming interface (API). It is powered by its own open-source numerical computing library, ND4J, and works with both central processing units (CPUs) and graphics processing units (GPUs).

  7. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    An autoencoder consisting of an encoder and a decoder is a paradigm for deep learning architectures. An example is provided by Hinton and Salakhutdinov [ 24 ] where the encoder uses raw data (e.g., image) as input and produces feature or representation as output and the decoder uses the extracted feature from the encoder as input and ...

  8. Deep belief network - Wikipedia

    en.wikipedia.org/wiki/Deep_belief_network

    The observation [2] that DBNs can be trained greedily, one layer at a time, led to one of the first effective deep learning algorithms. [ 4 ] : 6 Overall, there are many attractive implementations and uses of DBNs in real-life applications and scenarios (e.g., electroencephalography , [ 5 ] drug discovery [ 6 ] [ 7 ] [ 8 ] ).

  9. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models , especially in processing long sequences.