Search results
Results from the WOW.Com Content Network
Spontaneous fission arises as a result of competition between the attractive properties of the strong nuclear force and the mutual coulombic repulsion of the constituent protons. Nuclear binding energy increases in proportion to atomic mass number (A), however coulombic repulsion increases with proton number (Z) squared. Thus, at high mass and ...
According to Lilley, "The radioactive decay energy from the fission chains is the second release of energy due to fission. It is much less than the prompt energy, but it is a significant amount and is why reactors must continue to be cooled after they have been shut down and why the waste products must be handled with great care and stored safely."
The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
An assembly is critical if each fission event causes, on average, exactly one additional such event in a continual chain. Such a chain is a self-sustaining fission chain reaction. When a uranium-235 (U-235) atom undergoes nuclear fission, it typically releases between one and seven neutrons (with an average of 2.4).
The fission process often produces gamma rays and releases a very large amount of energy, even by the energetic standards of radioactive decay. Scientists already knew about alpha decay and beta decay , but fission assumed great importance because the discovery that a nuclear chain reaction was possible led to the development of nuclear power ...
The chain reaction requires both the release of neutrons from fissile isotopes undergoing nuclear fission and the subsequent absorption of some of these neutrons in fissile isotopes. When an atom undergoes nuclear fission, a few neutrons (the exact number depends on uncontrollable and unmeasurable factors; the expected number depends on several ...
The high short-term radioactivity of spent nuclear fuel is primarily from fission products with short half-life.The radioactivity in the fission product mixture is mostly due to short-lived isotopes such as 131 I and 140 Ba, after about four months 141 Ce, 95 Zr/ 95 Nb and 89 Sr constitute the largest contributors, while after about two or three years the largest share is taken by 144 Ce/ 144 ...