enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statistics as well as in the study of physical phenomena exhibiting normal distribution (e.g., diffusion). The Fourier transform of a Gaussian function is another Gaussian function.

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    While the ordinary DFT corresponds to a periodic signal in both time and frequency domains, = / produces a signal that is anti-periodic in frequency domain (+ =) and vice versa for = /. Thus, the specific case of a = b = 1 / 2 {\displaystyle a=b=1/2} is known as an odd-time odd-frequency discrete Fourier transform (or O 2 DFT).

  4. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.

  5. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    The development of fast algorithms for DFT can be traced to Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno.Gauss wanted to interpolate the orbits from sample observations; [6] [7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT ...

  6. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    As was our expectation, the frequency distribution can be separated into two parts. One is t ≤ 0 and the other is t > 0. The white part is the frequency band occupied by x(t) and the black part is not used. Note that for each point in time there is both a negative (upper white part) and a positive (lower white part) frequency component.

  7. Chirp - Wikipedia

    en.wikipedia.org/wiki/Chirp

    The red line in the waves give the relative phase shift to the other sine waves, originating from the chirp characteristic. The animation removes the phase shift step by step (like with matched filtering), resulting in a sinc pulse when no relative phase shift is left. A chirp signal shares the same spectral content with an impulse signal.

  8. Gaussian beam - Wikipedia

    en.wikipedia.org/wiki/Gaussian_beam

    The equations below assume a beam with a circular cross-section at all values of z; this can be seen by noting that a single transverse dimension, r, appears.Beams with elliptical cross-sections, or with waists at different positions in z for the two transverse dimensions (astigmatic beams) can also be described as Gaussian beams, but with distinct values of w 0 and of the z = 0 location for ...

  9. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    The response value of the Gaussian filter at this cut-off frequency equals exp(−0.5) ≈ 0.607. However, it is more common to define the cut-off frequency as the half power point: where the filter response is reduced to 0.5 (−3 dB) in the power spectrum, or 1/ √ 2 ≈ 0.707 in the amplitude spectrum (see e.g. Butterworth filter).