Search results
Results from the WOW.Com Content Network
This is a list of mathematical logic topics. For traditional syllogistic logic, see the list of topics in logic . See also the list of computability and complexity topics for more theory of algorithms .
Axiomatic proofs have been used in mathematics since the famous Ancient Greek textbook, Euclid's Elements of Geometry, c. 300 BC. But the first known fully formalized proof system that thereby qualifies as a Hilbert system dates back to Gottlob Frege's 1879 Begriffsschrift.
This is a list of notable theorems. Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures; List of data structures; List of derivatives and integrals in alternative calculi; List of equations; List of fundamental theorems; List of hypotheses; List of inequalities; Lists of ...
The notion of analytic proof was introduced by Gentzen for the sequent calculus; there the analytic proofs are those that are cut-free. Much of the interest in cut-free proofs comes from the subformula property: every formula in the end sequent of a cut-free proof is a subformula of one of the premises. This allows one to show consistency of ...
Intermediate logics are in between intuitionistic logic and classical logic. Here are a few intermediate logics: Jankov logic (KC) is an extension of intuitionistic logic, which can be axiomatized by the intuitionistic axiom system plus the axiom [13].
Fitch notation, also known as Fitch diagrams (named after Frederic Fitch), is a notational system for constructing formal proofs used in sentential logics and predicate logics. Fitch-style proofs arrange the sequence of sentences that make up the proof into rows.
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence φ , {\displaystyle \varphi ,} the theory T {\displaystyle T} contains the sentence or its negation but not both (that is, either T ⊢ φ ...