enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Text Classification, regression 2013 [122] [123] B. E. Sakar et al. Spoken Arabic Digits Spoken Arabic digits from 44 male and 44 female. Time-series of mel-frequency cepstrum coefficients. 8,800 Text Classification 2010 [124] [125] M. Bedda et al. ISOLET Dataset Spoken letter names. Features extracted from sounds. 7797 Text Classification 1994 ...

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    Another example of an adversarial evaluation dataset is Swag and its successor, HellaSwag, collections of problems in which one of multiple options must be selected to complete a text passage. The incorrect completions were generated by sampling from a language model and filtering with a set of classifiers.

  5. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  6. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    Specifically, consider a language model that given a previous text , predicts the next word . The network encodes the text into a vector v c {\displaystyle v_{c}} , and predicts the probability distribution of the next word as S o f t m a x ( v c W ) {\displaystyle \mathrm {Softmax} (v_{c}W)} for an embedding matrix W {\displaystyle W} .

  7. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    The idea of using the attention mechanism for self-attention, instead of in an encoder-decoder (cross-attention), was also proposed during this period, such as in differentiable neural computers [29] and neural Turing machines. [30] It was termed intra-attention [31] where an LSTM is augmented with a memory network as it encodes an input sequence.

  8. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The BoW representation of a text removes all word ordering. For example, the BoW representation of "man bites dog" and "dog bites man" are the same, so any algorithm that operates with a BoW representation of text must treat them in the same way. Despite this lack of syntax or grammar, BoW representation is fast and may be sufficient for simple ...

  9. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    A 380M-parameter model for machine translation uses two long short-term memories (LSTM). [21] Its architecture consists of two parts. The encoder is an LSTM that takes in a sequence of tokens and turns it into a vector. The decoder is another LSTM that converts the vector into a sequence