Search results
Results from the WOW.Com Content Network
Silver sulfate precipitates as a solid when an aqueous solution of silver nitrate is treated with sulfuric acid: . 2 AgNO 3 + H 2 SO 4 → Ag 2 SO 4 + 2 HNO 3. It is purified by recrystallization from concentrated sulfuric acid, a step that expels traces of nitrate. [7]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The result: 1 liter of water can dissolve 1.34 × 10 −5 moles of AgCl at room temperature. Compared with other salts, AgCl is poorly soluble in water. For instance, table salt (NaCl) has a much higher K sp = 36 and is, therefore, more soluble. The following table gives an overview of solubility rules for various ionic compounds.
When combined with silver, hydrogen sulfide gas creates a layer of black silver sulfide patina on the silver, protecting the inner silver from further conversion to silver sulfide. [8] Silver whiskers can form when silver sulfide forms on the surface of silver electrical contacts operating in an atmosphere rich in hydrogen sulfide and high ...
Solubility in water. 4.6 mg/L (20 °C) [1] ... Solubility: Soluble in aq. NH 4 OH, alkali sulfites, AcOH Decomposes in strong acids [2] Insoluble in liquid SO 2 [3 ...
Some hydroxides of non-metallic elements are soluble in water; they are not included in the following table. Examples cited by Baes and Mesmer (p. 413) include hydroxides of Gallium(III), Indium(III), Thallium(III), Arsenic(III), Antimony(III) and Bismuth(III). Most hydroxides of transition metals are classified as being "insoluble" in water.
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.